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SECTION I

INTRODUCTION

The following investigation deals with constitutive relations

employing generalized derivatives that relate stress and strain in

viscoelastic materials, and the solution techniques for the resulting

equations of motion for structures incorporating viscoelastic components

to damp vibratory motion. The use of generalized derivatives of

fractional order in stress-strain constitutive relations, first suggested

by Caputo (Reference 1), may be viewed as an extension of the standard

model for a linear, viscoelastic material.

The standard viscoelastic model for a uniaxial constitutive relation

is (Reference 2)

K d k )t (j

0(t) + T b " - E 0(t) + E E
k=l j= dt- " dt

The viscoelastic constitutive relation employing generalized derivatives

of fractional order will be taken to be

K J
o(t) + : bkl) [ot)J = E c(t) + F; .D [ (t)] (2)k 0 j= j  -

k=101

where the generalized derivative operator of real order a is defined by

S(t 1 d x( ) dt 0 < a < 1 (3)
o (t-T)

The generalized derivative constitutive relation (Equation 2) may be

viewed as an extension of the standard model (Equation 1) in the sense

that the derivatives are no longer limited to being of integer order.
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The use of this generalized derivative constitutive relation in

modeling the response of viscoelastic materials will be seen to have

several advantages over present methods. The major drawback of the

standard viscoelastic model (Equation 1) is that a large number of terms

are often required to describe a material adequately. The use of

derivatives of other than integer order in the constitutive relation will

be seen to produce satisfactory models with very few parameters.*

Because of the large number of terms required, the standard model

(Equation 1) often becomes too cumbersome to manipulate. Consequently,

an alternative known as the "complex modulus method" has been developed.

In the complex modulus method, measured values of E*(w) (Equation 4) are

used as a discrete approximation of the function E*(w). In the transform

domain, the general viscoelastic constitutive relation is

(w) E*(w)-*(w) (4)

E*(w) is measured for different frequencies of motion (Reference 4), wi,

which produces a set of discrete values of the modulus, E*(wi), over the

frequency range of interest. These discrete values of E*(w) are sub-

stituted into the transformed equations of motion of a viscoelastic

material to produce values of the transform of the response at discrete

frequencies. The inverse transform of the response is evaluated

numerically to produce the time history. The major drawback of this

method is the arduous task of calculating the inverse transform for every

point in time at which the value of the response is required. The use of

the generalized derivative constitutive relation will do away with the

need for numerical approximations in the frequency domain.

An elementary form of the "complex modulus" method, obtained by

representing the transform of the modulus by

E* (w) E (1 + insgn(w)) (5)
0 Z

*In Section V, a generalized derivative constitutive relation for the

elastomer 3M-467 is presented. The relation characterizes the material's
properties over four decades of frequency with three parameters.

2
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sgn(,) = 0, 0 (6)

-1 W < 0

and often known as "structural damping" (Reference 5), is valid only

for sinusoidal stress and strain in the material. Crandall has shown

that the response of a harmonic oscillator with "structural damping"

for impulsive loading is non-causal (Reference 6); that is, the time

response of the oscillator occurs before the loading.

Milne (Reference 7) has proposed several modifications of the

imaginary part of the modulus given in Equation 7 to produce a causal

response. Unfortunately, neither the modified modulus nor the one given

in Equation 7 is particularly suitable for transient (broad-band) response

of viscoelastic materials, because they do not account for the frequency-

dependent stiffness typically encountered. Caputo (Reference 8) observed

that a single term, generalized derivative, constitutive relation of

the form

o(t) E1 Da [C(t)] 0 < a1 < 1 (7)

produces frequency-dependent stiffness and damping and a loss factor*,

n, that is frequency independent.

n = tan (8)

Caputo's work with generalized derivative constitutive relations

focuses primarily on the propagation of waves in geological formations.

One of Caputo's earliest papers (Reference 9) was on generalized

independent loss factors or equivalently frequency-independent resonant

qualities, Q. This work was followed by a book (Reference 10) in which

Caputo dealt with the propagation of impulsive plane waves and the

*The loss factor in a linear material is the ratio of imaginary to the

real part of the modulus.

3
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free vibration of spherical strata using generalized derivatives in the

constitutive relations of the media. In the last chapter of the book

and in later papers with Minardi, Caputo compares the generalized

derivative relations with experimental observations of the properties

of some media: "some metals, glasses and the earth." (References 11, 12)

In 1974 Caputo proposed a generalized derivatives viscoelastic con-

stitutive relation of the form (Reference 13)

o(t) = nDa+n[L(t)] , 0 < a<1 ; n = 0,1,2,... (g)

where the generalized derivative operator was defined by

t 11+1 dx (t) 1 dt (10)
D xt- O dt (t-)a

This definition differs slightly from the generalized derivative used

in this investigation (Equation 3). Caputo used the relation (Equation 9)

to determine the response of a uniformly driven infinite viscoelastic

layer and investigated the hysteresis behavior of the constitutive

relation (References 14, 15). Recently, Caputo suggested, but gave no

application for, a constitutive relation of the form (Reference 16)

D [,j(t)] = rDa[ (t)] (11)

which is the harbinger of the general constitutive relation (Equation 2)

which is to be used in this study.

All of Caputo's work rests on a continuum formulation of the equations

of motion. Unfortunately, a continuum formulation of the equations of

motion for many structures of engineering interest is not practical. As

a result, a discrete formulation of the equations of motion is adopted,

based on assumed displacement, finite-element methods. A solution

technique developed for the motion of structures incorporating visco-

elastic materials modeled with generalized derivatives is developed as an

extension of the solution technique developed by Foss for non-proportional

viscous damping (Reference 17).

4
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In the sections to follow, constitutive relations using generalized

derivatives are developed, and their applications and limitations are

considered. Some experimental results are presented and found to show

that a constitutive relation, with parameters determined from the

response to sinusoidal loading, predicts very well the response of one

typical elastomeric material to an impact loading. Finally, the

formulation of multi-degree of freedom systems, necessary for large-

scale structural analysis, is considered. Special solution methods,

necessary for such applications, are developed.

5
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SECTION II

A BRIEF OVERVIEW OF GENERALIZED DERIVATIVES

Before construction of generalized derivative constitutive relations,

it is appropriate to introduce the properties of generalized derivatives

relevant to the following investigations. Of particular interest are the

form of the Laplace and Fourier transforms of generalized derivatives,

and the results of repeated differentiation of fractional order.

First and foremost, the generalized derivative is a linear operator.

Da[xl(t) + x2 (t)] ])C[Xl(t)] + Da[x 2 (t)] (12)

This property follows directly from the definition (Equation 3)

D [x(t)] = dt x(T) dt (3)dt (3)-t 0 (t T C

To put the definition into a form in which the calculation of its

Laplace transform is straightforward, one first performs a change of

variable

T = t-n (13)

which results in

Da [xt(t1 x(t-n) d, (14)
0 T1

Using Leibnitz's rule to differentiate the integral produces

1 t
1axt] = C-- 1 __x(0)1 -- a x(t-n) dn + x() (15)D011 (tI r(I -CL) f ' atr (I -a)t

0 n

6
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After taking the Laplace transform of Equation 14, the transform of the

generalized derivative of order a of the function x(t) is seen to be

I x (O
LrDr x(t)1] 1 (sL[x(t)3 - x(O)) + (16)

S S

which simplifies to

L[D x(t)]] = saL[x(t)] (17)

where

L[x(t)] f x(t)e- s t dt (18)
0

Notice that the Laplace transform of a generalized derivative of order cL

of a function is equal to s times the transform of the function.

Under certain conditions a similar property of generalized derivatives

is true for Fourier transforms.

F[D"[x(t)]] (i.)a F[x(t)] (19)

where

F[x(t)] f x(t)e- lwt dt (20)

The conditions are, first, that

x(t) = 0 fqr t < 0 (21)

in which case the Fourier transform becomes

F[x(t)] f x(t)e i t dt (22)
0

and, second, that the integral in Equation 22 exists. Note the parallel

form of Equations 17 and 19. Both relations were used by Caputo

(Reference 18).

7
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A useful property of generalized derivatives is that the generalized

derivative of order a,, of the generalized derivatives of order a2 of a

function is the generalized derivative of order a, + a2 of the function.

Again using operator notation, the property is

Da[DLx(t)]] = D 2 [x(t)] (23)

Notice that the definition of generalized differentiation given in

Equation 3 is restricted to fractional order a less than one. If a is

one or greater in Equation 3, the integral contains a non-integrable

singularity*. The definition of a generalized derivative of order B,

where B, where B > 1 and 6 = m + a where m is the largest integer not

exceeding B, is

DM+a x= (1 ) d + f t x(T) dt (24)
Dm 1-) [dt -  o (t-T)

a

*On the other hand, if a is zero in Equation 3, the relation is clearly
valid and follows from the fundamental theorem of calculus.

8
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SECTION III

THE BASIC GENERALIZED CONSTITUTIVE RELATION

In this section, the basic generalized derivative, viscoelastic

constitutive relation is presented and some aspects of its behavior are

established. The basic generalized derivative constitutive relation is

o(t) xDa[E(t) 0 < a < 1 (25)

or

X d f E(n) dn (26)o~tLT (t-n)a

Since the generalized derivative is a linear operator, this relation

is suitable only for the linear approximation of a material's properties.

This linear constitutive relation satisfies many of the presently accepted

constraints on viscoelastic constitutive relations.

In particular, it represents a material with fading memory. To

demonstrate this claim, it is necessary to put the constitutive relation

in a different form using a change in variable.

n = t-T (27)

and again using Leibnitz's rule to differentiate the resulting integral

produces

X ft) 1 3 c(t-t) dT + 28E(O) (

o t r (1-a)t t  (

or
t

0(t) : f G(C)T (t-T)dT + G(t)c(0) (29)
0

where

G (t) - (30)

9
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The constitutive relation, (Equation 29), represents a viscoelastic

material with a fading memory. A material is said to have a fading

memory if its relaxation modulus, G(t), goes to zero monotonically as t

increases (Reference 20). Notice that G(t) in Equation 30 does in fact

go to zero monotonically.

Since the material has a memory, the value of the stress at time t

is dependent on the entire strain history until time t. To ensure that

the constitutive relation produces a stress that is dependent on the

entire strain history until t, time zero must be chosen before or at the

onset of the initial strain.

Consequently,

(t)= 0 for t < 0 (31)

and the only way that

E(0) j 0 (32)

is if the strain history is discontinuous at t = 0. According to

Gurtin and Sternberg (Reference 21), the constitutive relation as shown

in Equation 29 is in the correct form to handle discontinuous strain

histories. Notice that a step discontinuity in the strain history at

t = 0 produces a stress history* that is singular at t = 0.

When the strain history is a continuous function of time, and zero

for negative times, the constitutive relation given in Equation 29 reduces

to

t
o(t) = f G(T) (t-T)dt , G(t) - (33)

This relation satisfies three out of four of Pipkin's restrictions on

viscoelastic constitutive relations (Reference 22). The first restriction,

that the stress be an odd functional of strain rate, is satisfied.

*The Voigt viscoelastic model displays this same property.

10
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The second restriction, that G(t) go to zero as time increases, is also

satisfied, which is in keeping with the fading memory property. The third

restriction, also satisfied, is that the kernel, the relaxation modulus

G(t), be a function and not a distribution. Pipkin's fourth restriction,

not satisfied by the generalized derivative constitutive relation, is

that G(t) be of negative exponential order.

11
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SECTION IV

GENERALIZED DERIVATIVE CONSTITUTIVE
RELATIONS FOR VISCOELASTIC MATERIALS

The task at hand is to use the basic generalized derivative con-

stitutive relation just presented as the building block for constitutive

relations that model the frequency-dependent moduli of viscoelastic

materials. The moduli of viscoelastic materials are complex numbers

where the real anG imaginary parts are functions of the frequency of

motion.

X*(W) = X'() + ix'(W) (34)

=*(W) P.'(W) + ill"(W) (35)

The moduli are defined as the transforms that relate the transforms of

stress and strain

o* (w) = 6 X*(w)e*(w) + 2, *(w)c* (L) (36)
mn mn mn

where 6mn is the Kronecker delta and e*(w) is the transform of the

dilatation strain

e* ( W + 22()) + £3 () (37)

A useful property of the moduli is that their values at frequency o

relate sinusoidal stress and strain of frequency wo in the material.

amn(t ) = 6mn X* o 0)eexp[iw 0 t] + 2i*(w emn 0 expiw 0t] (38)

Consequently, one can measure the values of V*(w) and X*(w) at discrete

frequencies of sinusoidal motion. As a result, the frequency dependence

of the moduli can be determined experimentally.

Typically, a viscoelastic material at constant, uniform temperature

has moduli that vary with the frequency of motion as indicated in

12
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Figure I (Reference 23). At low frequencies (the rubbery region) the

real part of the modulus is relatively constant, while the imaginary

part of the modulus increases with increasing frequency. At intermediate

frequencies (the transition region) both the real and imaginary parts of

the modulus increase with increasing frequency and the rate of increase

of the real part slowly overtakes the rate of increase of the imaginary

part. At high frequencies (the glassy region) the imaginary part of the

modulus decreases with increasing frequency, and the real part of the

modulus is relatively constant.

The generalized derivative constitutive relations presented here are

of two types. The first type are those relations intended to model the

viscoelastic behavior of the material in the rubbery and transition

regions. For brevity, this type of model is referred to as the RT model.

The second type are those relations intended to model the behavior of

the material in the rubbery, transition and glassy regions. This type of

relation is referred to as the RTG model. Since the RTG model may be

viewed as a generalization of the RT model, the RT model is considered

first.

The RT model for an isotropic, homogeneous, linear viscoelastic

material is

mn = xmn + x X.D J)e(t)mn mn 0 j=l j

L
+ 2 o +  PD ) (t) (39)0 =1 mn

where

0 < a < 1 (40)

13
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0 < & < 1 (41)

e(t) ; l(t) + E 2 2 (t) + c3 3 (t) (42)

Note that the RT model portrays the stress as a combination of elastic

stresses, proportional to the positive, real parameters Xo and p and

viscoelastic stresses, proportional to the positive, real parameters X.

and v.

To establish the frequency dependence of the moduli in the RT model,

one takes the Fourier transform of the constitutive relation.

J a

oan* ( ) = 6mn(Xo + [ I x(iw) e*(w)
mn mn 0 j=1 j

L
+ 2 (,po + I 1k (iw) ) inn (W) (43)

Expressing the moduli in terms of their real and imaginary parts produces

J aj Ix.
()= ( + W. cos __?__

0 -. j

J cji. ,
+ i X. sin-- - (44)

j=1 2

P W (j+ L a 1O
I+ z 2 os 2

L a nIa
V j , sin (45)

si=I

I151
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Observe that for low frequencies of motion, defined by

<< 1)o j=1lJ

and

U

1 1 W L << 1 ,(47)
1o Y,

the moduli in the RT model, (Equations 44, 45), have essentially a

constant real part and an imaginary part that increases with increasing

frequency, similar to the properties of a viscoelastic material observed

in the rubbery region (Figure 1).

At intermediate frequencies of motion, defined by
a (.

1 (48)Xo j=l j

and

L a
:1 , (49)

Po 1

the real and imaginary parts of the moduli in the RT model are increasing

with frequency, similar to the properties of a viscoelastic material

observed in the transition region.

It is evident that the RT model does not properly account for the

properties of a viscoelastic material at high frequencies, defined by

I I j A.w j >> 1 (50)
o j=l1

16
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and

1(51)o R=i

The real and imaginary parts of the modulus are predicted by the T model

to increase indefinitely with frequency. In the glassy region, however,

the real part of the modulus of viscoelastic materials is typically

constant (Figure 1), and the imaginary part is aecreasing with increasing

frequency. This discrepancy motivates the construction of a more complex

model which accounts for material properties in the glassy region, the

RTG model.

The RTG model for an isotropic, homogeneous, linear, viscoelastic

material is defined to be

K 8k  P a
(1 + X akD ) (1 + I b D P) o (t)

k=1 p=l n

6mn (1 + [ b D ) (X + P X)J) e(t
p=1 P o

K k
+ 2 (1 += 1 akD (1o + P t' D a) mn(t) (52)

Again, the frequency dependence of the moduli in the model is observed

by taking the Fourier transform of the constitutive relation. After

some algebraic manipulation of the transformed relation, the result is

J a
(X 0+ I i )* "=I _

0mn ~ mn K~ eA(w
(1 + ak(iW) )

k= 1

17
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L )
2 ()o0 + X 1k(ic)

+=1 (W) (53)

(1 + b (iw) P)
p=1 P

where
J

' + j 1 .iw)")
(W (54)

(1 + b (iw) k )
P=l P

L
(U + X v (iW) )

ii (W) z=1 (55)

1 + I b (iw) ()

p=1 P

0 < a .,a >'ak' P < 1 (56)

and

o, yV0,oxakbP >0 (57)

If the parameters ak and bp are chosen to be small, such that

ak(iw) < + X A.(iw) (58)k=1 j1 l

and

P L
X b (iw) P << 4o + y V i(iw)( (59)

P =1  P

18
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for frequencies in the rubbery and transition regions of the material,

the RTG model behaves Mike the RT model in the rubbery and transition

regions of the material.

It is, however, the presence of the terms ak and bp which enables

the RTG model to account for the properties of viscoelastic materials

at high frequencies; i.e., in the glassy region. Note that, if the

largest values of a and 6k are the same, and if the largest values a

and Sp are the same, then at high frequencies X*(w) and p*(w) have real

parts that become constant and imaginary parts that decrease with

increasing frequencies, as is characteristic of a viscoelastic material

in the glassy region.

An important property of the RT and RTG models is that they satisfy

the "elastic-viscoelastic correspondence principle." (Reference 4)

The correspondence principle states that the Laplace transform of the

stress response of a viscoelastic material can be constructed from the

Laplace transform of the response of an elastic material by replacing

the elastic constants, \ and i., in the elastic response by the Laplace

transforms of viscoelastic moduli, A*(s) and P*(s). The principle holds

when the transform of the elastic stress-strain constitutive relation

* (s) 6 xe* (s) + 211c r(S) (60)
mn rnn mn

can be used to construct the transform of the viscoelastic stress-strain

constitutive relation by replacing the elastic constants with the

transforms of the viscoelastic moduli. Thus, the viscoelastic constitutive

relation must be of the form

o* (s) = 6 X*(s)e*(s) + 2 p*(s),* (S) (61)
mn mfl mn

19
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The Laplace transforms of the RT and the RTG models are of the

general form given in Equation 61. The Laplace transform of the RTG

model is
J a.

( + JS )

* (s) =j= e*(s)°mn mn K k

(1+ I as k)
k=1

2j+ L ^

p mn (s) (62)(1 + I b s P )

p=l 
p

and the Laplace transform of the RT model is

J a.
a (s) ( + s J) e*(s)

Imn n 0 j=1

L OL
+ 2 (pi + X P Z s *(s) (63)

k=1

Another important property of the RT and RTG models is that they can

be constructed to be causal in the sense that the response (stress) does

not occur before the input (strain). The stress response is zero for

negative time if its Laplace transform is analytic in the right half s

plane. This condition on the transform of the stress is met, for the

class of strain histories having transforms that are analytic in the

right half s plane, when the branch cuts of sai, s, s5 k and s p are

along the negative, real s axis, and p*(s) and X*(s) have no zeros in

the right half s plane. Since the stress is zero for negative time,

the stress cannot anticipate the strain that begins at time zero.

Laplace transforms are also useful in determining the hysteresis

predicted by the RT and RTG models. For a sinusoidal strain history

20
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of frequency o starting at time zero, the transform of the stress history
is

S(t) = sinw 
(4SCinn mn 0 (64)

0

* (x) : (m *(s)e + 2W (s)E ) 0 6n n0mn (65)
0 S 2+W2

0

Evaluating the inverse transform in the same manner as in Section X, the
stress time history is found to be

( 1 [(6 mn*(i(O,)e O + 2u*(iw ) ) eiWo t
°ran 2 T (5mn o o(j Cmn °

(6 mnX*(-io)e 0 + 2 p*(-ijo)Eno) e-iWot

I 7 0 o( A*(re )e0 + 2 u*(re- )c mno

e-ert

W2+r2 dr (66)

As time increases, the integral term in Equation 66 goes to zero and
the sinusoidal terms dominate the stress time history. So, for a
sinusoidal strain history, the stress eventually becomes sinusoidal
as well.

Using Euler's formula, numerous trigonometric manipulations, andthe observation that the two sinusoidal terms are conjugates, the stress
for large time may be evaluated as components in-phase with the strain,

21
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proportional to sinwot, and components out-of-phase, proportional to

coswot. The resulting expression for the stress using the RTG model is"j 01
an (t) = SeoA1(w) Xo + 1 1 X w0j

t>>O jnl J o Jcos-

K 1TO J K a + ac s k
+ Xo =1ako cos k L I X ca oK (i.-B.)

k=1+ j=1 k=1 C J

L a Ir a P 8 i _

2 A() cos-- + p 0 X b w Pcos---
0 o 0 p=p 

L P a+W c2 ~~] Sfw+ p b w b Cos T  ( sinot

L=1 p= p po o 0

1 6meoAlo p 0  +o j 3lwo JSiII

K l' k  J K sin+ (_

kj=1

2 mnA2 (o) L + cIU o sir + P b si

mno 2 0 ES0f0F

L P +i- P
+ X PTbw cosw 0 t (67)

=i p=l 2 p o

22



AFML-TR-79-4103

where

K k -1

A(W I1+ a (68)1 0 k=1l *

and

P p -1

A2 (0) X1 + b •(iW o (69)

A more compact form of the expression for the stress is

o6(t) 6 (W)eosiiiwt + F (W )c Sinw t
mn mn looo0 2 o inn o

t>>0

+ 6 F (w )e coswot (70)
inn 3 0 o 0 4 F( 0 )E 0owt (00

Under conditions of uniaxial stress and strain, Equations 64 and 70 may

be recognized as the parametric equations of an ellipse; thus, it is

clear that the RTG model predicts the existence of a hysteresis loop and

the loop is elliptical.

The loss factor associated with the hysteresis loop, the ratio of

the energy dissipated during a cycle, D, to the peak strain energy

stored during a cycle, Umax' is a parameter often used to characterize

the ability of viscoelastic materials to damp vibratory motion.

D (71)

max

The energy dissipated per cycle is

2

3 3 f .
D I Y(t) (t) dt (72)

n=1 m=3 f
0
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where 2_ is the period of the motion. Using Equations 64 and 70 to
w0

evaluate dissipated energy yields

3 3
D ' 3 (w,)e 2  + I X F4 (Wo)C 2  (73)n3 m=1 4 nn

The peak energy stored during a cycle is

3 3 Cmn=C in (max) 3 3
U max mn dcmn = 1 dt(74)

nma x m = m 0 m n m n

mn

where &mn are the stresses in-phase with their respective strains, Emn

0sinw 0t. Again using Equations 65 and 66, the peak energy stored during

a cycle is

12 + 3 3 2(o)2Umax F 1 (W )e0 F2n m W c mno (75)

max o o n=1 m=1 in0

The resulting loss factor is seen to be

3 3
F3 (Wo)e 2  I X F 4 (W ) 2

n ml 0 inn=(76)
3 3 (76)F (W o)e2  + I. I F (W' )C2

n=1 m=i1 0 n °0

Notice that the form of the expressions for the hysteresis behavior

and loss factor of the RT model is identical to that of the RTG model.

This follows from the observation that the RT model is a special case of

the RTG model for bk O, k= 1, 2, ..., K, and bp =0, p =l, 2, ...,

P.
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In summary, RT and RTG models satisfy the elastic viscoelastic

correspondence principle. Conditions necessary to ensure that the stress

does not anticipate the strain have been developed. In addition, both

models predict the existence of stress-strain hysteresis effects and the

resulting hysteresis loops are elliptical. Most significantly, the models

predict moduli which have the same frequency dependence as is observed

in frequency-dependent moduli in typical viscoelastic materials.*

The outstanding question is whether or not the parameters of the RT

and RTG models can be chosen to describe accurately the properties of

a particular viscoelastic material. The construction of the RT model

for the elastomer 3M-467 is the topic of the following section.

*In addition, a generalized derivative constitutive relation occurs

in Newtonian, viscous fluids as demonstrated in Appendix B.
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SECTION V

THE RT MODEL FOR THE ELASTOMER 3M-467*

The first material examined for the possible application of generalized

derivative constitutive relations was the adhesive tape 3M-467. The tape

was chosen as a prime candidate because of its viscoelastic mechanical

properties, its linear response in shear for engineering shear strains

up to 1, its growing applications in mechanical damping, and the fact

that sufficient data on its mechanical properties were available.

The proposed uniaxial shear RT model for 3M-467 is

Sm(t) 2 (p + plD ) mn (t) , m n (77)

where

Po 1.0 lb/in2  (78)

= 7.3 lb-sec" 56/in2 (79)

and

= .56 (80)

The parameters of the model, 0o Pis and &l. are chosen so the

sinusoidal, steady-state response of the model closely approximates the

sinusoidal, steady-state response of the material observed experimentally.

For sinusoidal strain

iWt t 0.

tmn (t) =(81)Em~1 0. t < 0.

*3M-467 is an adhesive produced by the Minnesota Mining and Manufacturing

Co., Inc., Minneapolis, Minnesota.
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the RT model generates stresses of the form

0mn(t) = 2 (v 0 + Vi (iw) 1) mn e (82)

t>>O

for t large enough for the transients to have died out. The frequency-

dependent shear modulus, w(w), is seen to be

:W) = + 1(iw) (83)

Figure 2 displays the good agreement between the experimentally observed

mechanical properties of 3M-467 at 75°F and the RT model using the values

of the parameters given above.*

The parameters of the RT model were determined in an iterative

manner. Initial guesses of the parameters were made, and the resulting

frequency dependent shear modulus was compared to the observed modulus.

Successive guesses of the parameters were made to match the slopes and

asymptotes of the model to those of the observed properties until an

acceptable fit was obtained.

Although the parameters of the RT model are based on the sinusoidal

response of the material at 750F, the model can be used for non-periodic

strain histories. To demonstrate the ability of the model to portray

accurately the behavior of the material when undergoing non-periodic

motion, the response of the material as predicted by the RT model is

compared to the experimentally observed response of the material at 750F.

In particular, the behavior of 3M-467 was observed when the material

was used as a viscoelastic spring in a simple oscillator undergoing

*The mechanical propertief of 3M-467 were provided by the U.S. Air Force
Materials Laboratory, Wright-Patterson Air Force Base, Ohio.
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non-periodi, -,otiorl.* The viscoelastic spring was two pads of 3M-467

that underwent shear stra~n during the motion of the oscillator. Each

pad of 3M-467 was wade by laminating 2 mil layers of 3M-467. Air

entrapped between the layers of the pad was removed by pressing the

layers toqether with a 5 lb. weight for 48 hours.

The other two components of the oscillator are the mass and the

support structure (Figure 3). The mass for the oscillator is a metal

cube sandwiched between the two viscoelastic pads (Figure 4). Each pad

is attached to an aluminum brace. Both braces are glued to an aluminum

base which, in turn, is glued to a steel foundation as shown in Figure 3.

The specific objective of the experiment was to determine the

acceleration transfer function of the oscillator. The acceleration

transfer function is the ratio of the transform of the acceleration

time history to the transform of the input force history. The force

time history, measured by a Wilcoxon Z-11 impedance head, was sampled

at 2 x 104 measurements per second and all frequencies above 8 x 103 Hz

are filtered out. The mass of the oscillator was tapped with a

Wilcoxon Z-Il impedance head to produce impulsive loading. The force

time history measured by the impedance head and the resulting acceleration

time history, measured by an Endevco accelerometer, Model 2217, were

also sampled at 2 x 104 measurements per second where, as before, all

frequencies above 8 x l03 Hz were filtered out. The transforms of the

time histories were calculated using the "fast Fourier transform"

routines of the Hewlett Packard System 5451B.

This experimentally determined transfer function is compared to the

analytically predicted transfer function based on the equations of motion

of the oscillator and the RT model for the viscoelastic pads. The force-

displacement relation for the two pads based on the RT model (Equation 77)

~is
i (t) 2A o + P D  ) x(t) (84)

*A schematic of the viscoelastic spring appears in Figure 4.
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where A is an area of contact with the mass for each pad, 6 is the
thickness of the pad, f p(t) is the total force acting on the faces of
the pads in contact with the mass, and x(t) is the displacement of the

face of the pad in contact with the mass. This force displacement

relation is based on the assumption that the displacement in the pad

varies linearly between the support wall and the mass of the oscillator.*

The resulting equation of motion for the oscillator is

•"2A Ct
f(t) = rx(t) + 2 (0o + i D 1 X(t) (85)

Taking the Fourier transform of the equations of motion and determining

the acceleration transfer function produces

(im) 2X( ) ni + 2A (Po + "1(iw ) )F(w)' = (i 2 / (86)

A comparison of the experimentally determined and analytically

predicted transfer functions for five oscillators with various masses

and viscoelastic spring stiffnesses is presented in Figures 5 through 14.**

Each transfer function is displayed in terms of its magnitude and phase.

The agreement between the observed and predicted transfer functions is

very good.

For comparison, the calculated transfer function based on a Voigt

viscoelastic model of 3M-467

Smn (t) = 2 (po mn(t) + ,lemn(t)) m I n (87)

*A finite element analysis of the viscoelastic pad verifies this

assumption to be valid for the frequency range of the tests, 0 to

5 x 103 Hz.

**The relevant parameters for each of the five oscillators are given in

Table 1.
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is also given in Figures 5 through 14. The parameters of the Voigt model,

0 and ii,, are chosen to match the properties of 3M-467 at 103 Hz.

= 630 lb/in 2  (88)

.113 lb-sec/in 2  (89)

Note that for some of the oscillators, the Voigt model and the PT

niodel both generate transfer functions that agree reasonably well witb

the observed transfer functions. However, for those oscillators havinq

the peak magnitude of acceleration response at higher frequencies,

(Figure 13 for example) the transfer function based on the RT model is

clearly in better agreement with the measured transfer function than the

transfer function based on the Voigt model. In addition, the phase of the

observed transfer functions is consistently modeled more accurately by

the phase of the transfer functions calculated using the RT model. These

results follow directly from the fact that the RT model accounts for the

observed properties of 3M-467 over the entire frequency range of interest,

102 Hz to 5 x 103, whereas the Voigt model accounts for the observed

properties of 3M-467 only in the neighborhood of 103 Hz. This is

clearly seen by comparing Figures 2 and 15.

If one attempts to duplicate the results presented here, one should

be aware that the mechanical properties of 3M-467 are strongly dependent

on the water present in the material. Figure 16 shows the variation of

the real part of the modulus with relative humidity. Changes in the

imaginary part of the modulus with relative humidity are roughly

proportional to changes in the real part. Hence, the loss factor, the

ratio of imaginary part to real part of the modulus, is relatively

insensitive to changes in relative humidity, as seen in Figure 17.

The pads of 3M-467 used in this experiment were fabricated under

conditions of 40% relative humidity at room temperature. However, the

pads were kept covered during the time between fabrication and installation

into the test setup.
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It su wawry, the RT model for 3M-467 is capable of accurately

r,2lidCtiny the nion--perioJik response of the material over several decades

Of frequency, and is superior to a Voigt model of the material.

Lonsequently, the Ri m(odel having parameters based on the sinusoidal

Ieady motion of the material at numerous frequencies is capable of

,rt-,dicrtiny the response of the material to impulse-like, short duration

loadinj. Terefue, one Lan conclude that the RT model can accurately

preoict the (jeneral response of the material within the frequency range

4i the model.
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SECTION VI

A FINITE ELEMENT FORMULATION
OF THE EQUATIONS OF MOTION

Having established that a very elementary formulation of the equation

of motion for an elastomer-damped oscillator produced excellent agreement

with experimental observation, it is appropriate at this point to put

forward the tools required in the analysis of more complicated structures

of engineering interest. In particular, the development focuses on the

analysis of structures having both elastic and viscoelastic components.

A continuum formulation of the equations of motion for such structures

is impractical because of the resulting complexity of the formulation

for most structures with complex geometry and varying material properties.

As a result, a finite element formulation of the equations of motion is

adopted.

The cornerstone of the finite element approach is the construction

of the stiffness matrices for each of the finite elements in the structure.

The stiffness matrices for the elastic finite elements of structure are

constructed in the normal fashion using assumed displacement methods or

assumed stress methods, etc.

The formulation of the stiffness matrices for the finite elements in

the viscoelastic components, however, is limited to those methods that

do not constrain the stresses in each finite element to be in equilibrium

with the forces at the nodes the element. The assumed stress method, in

particular, is based on this constraint (Reference 24). As a result,

the time dependence of the stresses in the element is predicated on time

dependence of the nodal forces. However, this contradicts the fundamental

nature of the generalized derivative models in which the time dependence

of the stresses is predicated on the time dependence of the strain

histories.
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... ., . ..... . umed displacement method is adopted to

, , r1a tr : , i r: trix of the viscoelastic finite element

(t *tereie f.). Li1 Jn assumed displacement element, the displacements

,,L in tfiu ejuinuL naru dssuled functions of the nodal displacements.

-ih i it , rt. ax of the viscoelastic finite element is constructed
r tfle ei 1. vlA;c2eastic correspondence principle. The stiffness

.oI[ Is first t oiuloted as though the material were elastic. The

-itfness iiat'ix is Liien separated into two matrices, one matrix containing

r.ho'e elements p;oportional to the elastic constant A, and the other

,, at icontaininq those elements proportional to the elastic constant 1j.

[K] = [K"] 4 [K'] (90)e C e

"\l his point the transforms of the moduli, w*(s) and A*(s), from either

ita RT or the RTG models, are substituted in place of the elastic constants,

ad . The tesuIt is the viscostiffness matrix of the finite element,

(s K]e + p*(s)[Ke'] (91)

, i, 1 , ,-h 'is,:)stiffness matrix for a finite element in which the

.I tIti,' i edtion is used to model the material is

J a.
( o + . X s 3)

01  j=1I [K
.,--I k. = K=e

( 1 + I aks k )
k=1

L a(Po +  11 t s )

+ 0 ' [K] (92)
a e

( 1 + Z b s P)
p=1 P
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The viscostiffness matrix of the finite element relates the nodal

forces, IF(s)I, and nodal displacements, {X(s)}, as shown below

{F(s)} = [Ke (s)] {X(s)} (93)

and the viscostiffness matrix of a viscoelastic structural component is

constructed from the viscostiffness matrices of the elements within the

component in the normal manner. The viscostiffness matrices of the R

viscoelastic structural components

{F(s) r = [K(s)]r {X(s)I r  r = 1,2,3,...,R (94)

and the stiffness matrices of the Q elastic structural components

(F(s)} = [K]q {X(S)q q = 1,2,3,...,Q (95)

are used to construct the stiffness matrix of the total structure, again

in the normal manner.

The stiffness matrix of the total structures, [K(s)], and the mass

matrix of the total structure are now used to construct the Laplace

transform of the equations of motion of the structure

s 2 [N] {X(s)} + [K(s)] {X(s)} = {F(s)} (96)

Since some of the elements in [K(s)] are functions of s, decoupling the

equations of motion, (Equation 96) to obtain solutions is more complicated

than decoupling the equations of motion of a completely elastic structure

where the stiffness matrix has constant elements. Finding solutions to

Equation 96 is the topic of the next section.

51



AFML-TR- 79-4103

SECTION VII

THE SOLUTION OF THE DISCRETE EQUATIONS OF MOTION

The task at hand is the solution of the equations of motion which

resulted from the finite element formulation (Equation 96). A form of

modal analysis is adopted where the mode shapes, eigenvectors, of the

equations of motion are used to construct an orthogonal transformation

of the variables that decouple the equations of motion. The decoupled

equations of motion are then used to determine the components of the

structure's response and a general form of the solution to the equations

of motion is derived.

Throughout this development, the viscoelastic components of the

structure are described by their respective RTG models. Since the RT

model is a simplified version of the RTG model, the method of solving

the equations of motion of a structure with viscoelastic components

described by RT models will be seen to be a special case of the following

solution technique.

The reason for developing a special solution technique for the

equations of motion

s 2 [M] {X(s)} + [K(s)] {X(s)} = {F(s)} (97)

is that the normal method of decoupling the equations of motion, using

modal analysis to construct an orthogonal transformation that diagonalizes

the mass and stiffness matrices, is not applicable because the stiffness

matrix of the strucLure, [K(s)], contains terms that are dependent on

the Laplace parameter, s.

The method of solution for Equation 97 is an extension of the method

proposed by Foss to decouple the equations of motion for a structure with

non-proportional viscous damping (Reference 26).

[M] {i(t)} + [C] {i(t)} + [K] {x(t)) - {f(t)} (98)
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Non-proportional damping occurs when the damping matrix [C] is not a

linear combination of the mass and stiffness matrices of the structure.

[C] $ aI[.3] + a2[K] (99)

At present there is no general method of constructing an orthogonal

transformation for three, real, square, symmetric matrices when each

of the matrices is not a linear combination of the remaining two.

Consequently, Foss posed the equations of motion for non-proportional

damping in terms of two real, symmetric matrices.

d I I- ! + --- . . ... . ... (100)
I C X 0 K t

The lower set of the partitioned matrix equations is the equations of

motion of the structure and the upper set of matrix equations is satisfied

identically. The equations of motion as posed in Equation 100 are readily

decoupled and solved.

To solve the equations of motion of the structure containing elastic

and viscoelastic components (Equation 96) the equations are posed in terms

of two real, square, symmetric matrices. To begin, one multiplies the

equations of motion by each distinct term appearing in the denominators

of the elements of the stiffness matrix, [K(s)],

[D(s)s 2 [M] + D(s)[K(s)]] {X(s)} - D(s) {F(s)} (101)

where

N Kn 8nk N Pn
D(s) n 11(1 + I ank s  • I (I + b s fp) (102)n=1 k.1ln n=1 p=l np

I
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assuming that there are N different viscoelastic materials in the

structure. Multiplying D(s) times [K(s)], the stiffness matrix, produces

a matrix, [KD(s)], that has no terms in s appearing in the denominators

of its elements.

D(s) [K(s)] = [KD(S)] (103)

In fact, all of the elements of [KD(s)] are constant terms plus terms

containing s raised to real, positive powers. Also note that the matrix
2D(s)s [MI has elements which are sums of terms containing s raised to

real, positive powers.

The equations of motion are now expressed as

[Z(s)] {X(s)) = D(s){F(s)} (104)

where

[Z(s)] = [D(s)s 2 [M] + [KD(S)]] (105)

At this point in the development, the real, positive exponents of s

appearing in the matrix [Z(s)] are taken to be rational as well. Had

any of the exponents been initially irrational, they are replaced by their

rational approximations to as many significant digits as desired. Since

all of the exponents in [Z(s)] are rational, the matrix may be expressed as

J J/m L /m[Z(s)] = [ [M] Lcs + ,[K/]S ] (106)

j:2m
]  ~

where m is the smallest common denominator of the exponents of s in

[Z(s)] and

i j/m
s 2D(s) = c.s (107)

j=2m ,
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KDI[ K Is (108)

where [K] is symmetric and some of the [K.] and c.i appearing above

may be zero.

Using Equation 106, the equations of motion of the structure become

J j L X/m
I[M] ) c-s m + I [K ]s m] {X(s)) = D(s){F(s)) (109)

J 1=0~

and expressed in terms of one index of summation, they are

j /mS[[M]c. + [K.I]]s {X (s)1 D(s) U(s)1 (110)
J-0 -

or

S[A.]S {X (s) D (s f F(s)(1)
j=0 j

where

[A-] = [ [M]c + [K. ] (112)
.3 .3.

and again recognizing that some of the c.i and [K. are zero.

The equations of motion as given in Equation III are now posed

in terms of two real, square, symmetric matrices.
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J-1

Aj m {X(S)1

J-2
ZERO Aj Aj~l s m f~

J-3

A J-1 AJ-2 s {X(s))

Ai . . As A4  A3 S2/m {X(s)}

-~A1 . . A4 A 3  A2  s {~)

A AA
N- J-1 AJ-2 A * 3 A 2  Al {X(S))

J.-1

ZEO-A . S m {X(S)}

J-3

* - 1 -AJ-2  0. m {X(s)1

-Aj -A4,1 . . -A 4  -A 3  0. s2/ {X(s))

-AJ A- 1 -AJ-2..- A3  -A.2 0' S1/ *()

0. 0. 0. ... 0. 0. A0  {X(s)}
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o.)

{o.}

= * (113)

{0.)

{o.}

D(s){F(s) }

Note that each matrix [A.], j 0,1,2,...,J, is real, square, and

symmetric because they are linear combinations of [M] and [K.]. It
follows that the two matrices containing [A.] in Equation 113 are also

real, square, and symmetric. Also notice that the lowest set of

partitioned matrix equations in Equation 113 are the equations of motion

of the structure as given by Equation 111, and that all of the upper sets

of matrix equations in Equation 113 are satisfied identically.

The equations of motion as posed in Equation 113, referred to as the

expanded equations of motion, can be decoupled using an orthogonal

transformation. The general form of the expanded equations of motion is

s?[M] X (s) + [K] {X (s) } {F(s)} (114)

which is Equation 113 expressed in more compact notation. The orthogonal

transformation is constructed from the eigenvectors associated with the

eigenvalue problem for the expanded equations of motion.

n -on + [K]{; n = {0.) (115)
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The eigenvectors (n } are used to construct the orthogonal transformation

matrix [D] in the normal fashion, and the resulting transformation of

variables is

(X(s)} [;]{a(s)} (116)

Substituting this transformation into Equation 14 and premultiplying the

equation by [4]T produces

S ID M]i]{a(s)} + [] [K][4,] a(s) = [-] TF(s)}(117)

To demonstrate that Equation 117 is, in fact, the decoupled expanded

equations of motion, one uses the fact that eigenvectors of the expanded

equations of motion are orthogonal with respect to [M] and [K].

{0 T [M]n = 0. j ' n (118)

{ [ 0. j n (119)

Equation 117 then reduces to

S /mi]a(s)} + ['-k -] {a (s) : []T{F )} (120)

where [-mn-] and [-kn--] are diagonal matrices of the modal constants

mn and kn, respectively.

mn { T n[M]{ n (121)

T

k n  []T } (122)

Premultiplying Equation 120 by [-mn -Y 1 or equivalently yields
mn

1/L1Ias) + [-LIk s_ {F (s)}(123)n n

The ratio of the nth modal parameters, k n/m, is minus the nth

eigenvalue of the expanded equations of motion.

k n /M -nn (124)
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Premultiplying Equation 115 by {'nI T produces

An{ ) n}[M]{n} + {On}T[K]{ } n 0 (125)

X m + k = 0 (126)

from which Equation 124 follows. As a result, the equations of motion

can be further simplified to

s /m[-I-.{a(s)s) n k [--1-m D ]T{F(s)}(127)

From Equation 127 it follows that the expression for the Laplace

transform of the nth modal coefficient, an (s), is

a (S) = i { (128)
m (s - n)

This expression for the modal coefficient can be further simplified by

noting the general form of the eigenvector {n I associated with the

expanded equations of motion

J- 1 {On}
n n

-J-2

-J-3

{On = (129)

X2(€ n }
n n

X n{01n }

{on }
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where {.np and A n are the solutions of the eigenvalue problem associated

with the original equations of motion in the form of Equation 111.

[A] { {0.} n = 1,23,... ,N (130)
j=0 j n n

The general form of the nth eigenvector, { n}, can be verified by direct

substitution in Equation 115 when [M] and [K] are expressed in terms of

the matrices [A.] as indicated in Equation 113. The lowest set of

resulting partitioned matrix equations produces Equation 130, and the

upper sets of the partitioned matrix equations are satisfied identically.

Consequently, the numerator of the nth modal coefficient, {n}T{F(s)I, is

T

XJ-l{ On) {0. }

- J-2
An {On) {0 .-}

An ten} {0. }

{ n}T{F(s)} = * (131)

nn
{ {0.}

n{,n }  {0.,}

{On }  D(s){F(s)}

or

{n} {F(s)}= {n }T{F(s)}D(s) (132)
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t hand the n modal coefficient reduces to

an (s) I / m  (133)
-t S n )

The Laplace transform of the displacement response of the structures

follows from Equation 116 and takes the form

N
{X(s)} V a (S){( n }  (134)

n=1

or

N {n} T {F(s)}D(s)
{X(s)} 1 / (n }  (135)

n=1 m (sl -/m n)

where N is the order of the matrices [M] and [K] in the expanded equations

of motion.

The order of the expanded equations, N, can be very large. From

Equation 113 it is clear that the order of the expanded equations of

motion is equal to 6, the order of the matrices [A.], times J where J is

defined in Equation 107.
N = * J (136)

From Equation 107, it is clear that J/M is the largest exponent in the

expression s2D(s) which is 2 + where 3 is the largest exponent in

D(s). Therefore, J =m(2+8) (137)

and the order of the expanded equations is seen to be

N - 6 m(2+0) (138)

Note that if m, the smallest common denominator of the rational exponents

of s, in the original equations of motion is large, the order of the

expanded equations is quite large for a structure with anything more than

a very modest number of degrees of freedom. However, the solutions to the
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expanded equations of motion can be obtained by using numerical methods

that do not involve the manipulation of the expanded equations, as will

be shown in the following section.

Before proceeding, it should be pointed out that the equations of

motion of a structure containing both elastic and viscoelastic components

can be solved given that a finite element formulation of the equations

of motion is possible and that an RT or RTG model exists for each

viscoelastic material in the structure. The general form of the solution

technique for the equations of motion containing only RT models for the

viscoelastic components is identical to the above development except that

D(s) is set equal to one.
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SECTION VIII

CALCULATING THE LAPLACE TRANSFORM
OF THE STRUCTURAL RESPONSE

At this point, it is clear that solutions to the equations of motion

for the structure containing elastic and viscoelastic components

N { }T{F(s)}D(s)
{X(s)} {n }  (135)

m (s n(

are difficult to calculate from the expanded equations of motion, because

of the large order of the matrices in the expanded equations. As a

result, an alternative method of obtaining the solutions is required if

the finite element formulation of the equations of motion using

generalized derivative models is to be a useful tool to the engineer.

The alternative method adopted here is a combination of iterative

schemes used to obtain the eigenvalues, Xn' and eigenvectors, nn n
associa;Itom with the orinina4 eqIua tinne of motion.

J

[: -[A.]x]{¢ n }I : {0.} , n 1,2,3,...,N (130)

Recall that the number of distinct homogeneous solutions to the equations

of motion, N, is dependent on the smallest common denominator of the

exponents in the equations of motion, m; the largest exponent in the

product of the denominators terms of the Laplace transform of the RTG

models in the equations of motion, 6; and the number of degrees of

freedom of the structure, 6.

N = 6m(2+a) = 2m6 + m6 (138)
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Using an iterative scheme based on the homogeneous form of the

equations of motion in Equation 96, 26m of the homogeneous solutions

are obtained.

[x [M] + [K( n)]{ n}] {0.} (139)

The iteration for- the solutions centers on calculating successive

estimates of in and i4 n using the scheme

n n 1[X2 m (P+1 )[] + [K( (l)))]]{ n }(P+l) : {0. } (140)

.n(P)  is the pth estimate of n 2m(P+l) is the (p + 1)th estimate of
n n n
2m and fqnI (p+ l ) is the (p + 1)th estimate of { n}.
n n (Pl th(p+1thn

Given a value of (P ), the (p + 1)th estimates of An  and { n} may ben ~nn
calculated using matrix iteration or any other method that is appropriate

to obtain the solution to the eigenvalue problem

[B] } = }e(141)

where B is complex. Note that Equation 140 can be expressed as

[K(1 I-I [Ni]{ } (P,+1) _ i 1 ,n}(P+1) (142)

11 n ,2m(P+1) (
n

which is of the same general form as Equation 141.

The iterative scheme as it appears in Equation 142 is only useful in

obtaining the eigenvalue with the smallest magnitude, XI' and the

associated eigenvector, {1i}. To obtain the other eigenvalues and

eigenvectors, the iteration scheme is modified to allow the scheme

to converge on the larger eigenvalues and associated eigenvectors.

For instance, the scheme used to obtain the Lth eigenvalue, XL' and

the Lth eigenvector, {@L1 , is (Reference 27)
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K(1 L)]I + ,t[q L (P+l)

t.=1 A m P-

1 { a -(143)

-2in(P*1)
L

The terms in the summation on the index Z subtract the components of

the first L - 1 eigenvectors, associated with eigenvalue problem,

(P)(P) - (P)=, 2 ,3 , . . ,L-1(144)

from the successive approximations of Lcalculated when matrix

iteration is used to solve Equation 143.

Given that matrix iteration has successfully produced XL and

L(P+ l)  one can take advantage of the orthogonality of the mode shapes

{t}(P)T[Ni] {0 (P+ -) 0. t=1,2,...,L-1 (145)

to demonstrate that

L ____
(  O_ )T (P+1)

2m(P) ]{L = 0. (146)

and Equation 143 reduces to

[K( (P) -1 (P+l) = _+1 L (147)

L

Thus, {oL }(P+I) and 2m(P+ l) are in fact the (p + 1) th approximation of

the solution to the equations of motion.
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On the other hand, { I(P) and A ( P ) ,  = 1,2,...,L-1, are not in

any sense approximations of the solutions to the equations of motion.

However, they are the first L-l eigenvalues and eigenvectors associated

with Equation 147. This can be seen by comparing Equation 144 with

Equation 147. to )(P) and A (P ) can be calculated using matrix iteration.
z z I

Notice that in continuing the iterative processes in Equation 140 or
143 the (P + 2) th approximations of the solution, -2m(P+2) and { In(P+2) ,

approi (mins An 1/2m

are based on the value of nP+l). However, the function Z has 2m

branches. Given a value of 2m(P+I), one can calculate 2m values of
S(P+) one value for each branch of ZI/2m.
n

So, when using Equations 140 and 143 to obtain solutions of the

equations of motion, it is necessary to choose one branch of ZI/2m to

calculate the 6 eigenvalues and 6 eigenvectors. Then another branch of

ZI/2m is chosen and 6 other solutions are obtained. This process is

continued until all 2m branches have each been used to calculate 6

solutions producing a total of 2m6 homogeneous solutions to the equations

of motion. The general form of the equations that has these 2m6

homogeneous solutions is

2m - j=1 ,2,..., ,
[ m [] + EK(X. rk ]]{1 ¢j }k) : 0 (148)

j (k) k) ()k:1,2,. .. ,2Zm

m/2m

where the subscript k denotes the branch of Z on which the relation

2m, k)X)  2 n Xj (k) (149)

is valid.
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The remaining am6 of the N homogeneous solutions to the equations

of motion are determined using Equation 138, an iterative scheme based

on the homogeneous form of Equation 109.*

J L
c.X + K]{ } = {0.1 (150)

j=2m Z = k n

The iterative scheme is

[[] (p+)Jl(P) J-1 -j(P)

[it (C X X + X .c.Xj=2m J

L [K2 ]x2(P)]{¢n}(P+1)= (0.1 (151)

Z0 n n

or, in more compact form

[[l]Q(X(P+l)>X(P)) + [KD(Xn (P)]]{0 I= {0.I (152)

where, as before, is the Pth estimate of the eigenvalue, X"
wth ou n beo th

is the (P + 1) estimate of the eigenvalue and {qVn}(P+ l ) is the (P+l)

estimate of the eigenvector. Given a value for (P) one can calculaten
(P+l) and Q(X1P+l), n(P)) using matrix iteration or any other method

suitable for the solution of Equation 141. Equation 152, expressed in

the form of Equation 141, is

[KD (,JP)) -I I (P+1) +1 )  (153)D n nM~ ~ - - (P+1) -7P71 (13Q(X n p l 'n)

*Note that, if the equations of motion contain only RT models for the
viscoelastic materials, that D(s) is one and , the largest exponent
of s in D(s), is zero. Hence, the total number of homogeneous solution,
N, is 2m4 as seen by Equation 138. Since Equations 140 and 143
provided 2m6 solutions, one can return to Equation 136 and calculate
structural responses.
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At this point, the numerical value of Q(xP X from Equation 153

-(P+l)n n
is used to calculate X with the relation

Q (P+l), ( P ))  = (P+I) -J - l ( ? )  J
Q(Xn )A nXn n+ c'Xn (154)

j=2m 3

which follows from Equation 151 and 152. However, this method of

calculating (P+l) assumes that A(P+l) are both on the principal branch
n n

of (Xnm) / m The method of calculating (P+l) assuming that (P+l) and
n n n
('th I m

are both on the k branch of (A ) is
n n

l/Bi

Q(x(P+) X(P) C (P)
- I., j +1)n(k) ' cj 'n(k) ) ) n(k) (155)

J- 1 (P+-(n (k

where the k
th branch of Z

I/am is used to calculate n(k)

The resulting form of the iteration process is

[K X- P) A-I C( P+I)
KD , n(k)) [M{n(k ) }

1 (P+1)
-r- (P+1 {77 n (k) (156)Q ,N (k), Xn (k)))

where successive.estimates of An(k) are calculated using Qn(k) ' n(k))

from Equation 156 and then using Equation 155 to calculate ()P+l). When

using matrix iteration to solve for Q((P+)'n()) and {0n( ) inn~) n(k) ~ n(k) i

Equtio 15, oe uualy otais olythe Q with the smallest magnitude
and its associated eigenvector,

To obtain successive estimates of the other Q's with larger

magnitudes and their associated eigenvectors, the iteration scheme
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W(P+I), P)
is modified as before. The iterative scheme that yields Q(L(k) ()

and { L(k)} is
}()L r~{Lk )) P I

[KD (P) 1 L-1 " (P) 1() )

KD( P i -) {- Ik) 
} [+l {)  L(k)1

( (k) i(k)

tok P+1 (P57

P+),().() n {U( +)(P ~ k
1P~ )~ ~ ~ (157)P

Q(A(k) (k) and f' (k)} are the solutions to

[K D 0 L(k) Amk) (Ag (k)

having the L- I smallest values of Q. The values of Q(A,(; I A(P)%

ard {) k)} v ) Can be obtained using matrix iteration.

Using Equations 155, 156, and 157, 66m homogeneous solutions to the

equations of motiot, are obtained for each branch of Z
I/6m . Since there are

6m branches of Zl/ m, the iteration process should produce Bm homogeneous

solutions. These homogeneous solutions satisfy the homogeneous equations

of motion.

J L pl,2,...
[[M] C. (k) + [K Ixk {0. (159)j=2m i P k p(k)]{P(k ) }  o.(59

j~m . p( p'.jk=1i2,. .•. ,8m

The two iterative schemes used to obtain the N solutions to the

homogeneous equations are considered to have converged when successive
(A"(P), an P+l)

approximations of An(k) n(k) andn(k) ) are approximately the same

complex number. (P+i)
Xn (k)

__= 1.0 (160)

n (k)
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The general convergence criteria of the iterative schemes are considered

beyond the scope of this investigation; however, the schemes have converged

for numerous structures considered by the author. Homogeneous solutions

for an example problem, calculated using the iterative scheme given above

appear in Table 2.

Note that all of the parameters of the Laplace transform of the

structure's response are determined, except the modal constant mn

defined by Equation 121.

m = { IT[M] { n }  (121)

The eigenvector of the expanded equations of motion, {n ), can be

constructed from the nth eigenvalue and associated eigenvector of the

original equations of motion, Xn and {n 1, using the relation given in

Equation 129. This, coupled with the general form of [M] given in

Equation 113, produces an expression for mn which takes the form

m : { . L j. [.. 33 r} ,j=

The modal constant of the expanded equations of motion, mn, can be

calculated without manipulating the expanded equations of motion.

In conclusion, all of the parameters in the general form of the

Laplace transform of the structure's response can be calculated without

manipulating the expanded equations of motion, given that the iterative

schemes outlined above converge.
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TABLE 2

HOMOGLNEOUS SOLUTIONS OBTAINED USING
THE PROPOSED ITERATIVE SCHEMES FOR AN EXAMPLE PROBLEM

.0825 .33001

4.0 + 0.2 + O.2s -2.0
[K(s)] 1.0 + 0.1s0

2.0 4.0 + 0.01 + O.0siI
1.0 + 0.1s

Using Equations 140 and 143

1.000 + i 0.0
A1(1) 1.071768 + i 1.099794 I {.040 + 0.0165

A 1(2) = 1.073498 + i 1.02861.1 { 1(2?)} = + i 0.02 8

,000 + i 0.0238

>'1 ) = 1.073498 - i 1.028611 {o1 3 } :{ . D .
4 113)) = fl. 0 01 + i 0.02J

1 9,000 + i 0.0
1(5) = 1.071768 - i 1.099794 {¢1(4))k = : l.4 . 1

1.040 + i 0.015

1.000 + i 0.0
A201) =1.581998 + i 1.601989 { 2(1)} = f-.9713+ i 0.012 J

A2(2) =-1.5 84631 + i 1.547150 {02(2)} =1-11.002 + i 0.02401
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TABLE 2 (Continued)

X2(4) 
=  -1.584631 - i 1.547150 {02(3)} = { 1.

0 0 0  +  i  0.0240

_1.000 + i 0.0
2(5) = 1.581998 - i 1.601989 2(4)} = 1 i 0.0

2(5) '2(4 L-.971 - i O.Ol2 0f

Using Equations 156, 157, and 158

81.000 + i 0.01
1 =3 -9.997418 + i 0.0 (01 "3 ) }I  4.6=

" 3)= 4. 462 + i 0.01i

= -9.99S85 + i 0.0 {02(3) 1.000 + i 0.0

- 0.448 + i 0.0
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SECTION IX

THE EXISTENCE OF THE SIRUCTURAL
RESPONSE TO IMPULSIVE LOADING

Of particular interest at this juncture is whether or not the inverse

transform of the Laplace transform of the structure's displacement

response for impulsive loading exists. In fact, the inverse transform

always exists and is real, continuous, and causal.

To demonstrate this, one starts with the general form of the transform

of the structural response.

N T
I 1. }1 {F(s)}D(s)

n=L {n }  (135)

For simultaneous unit, impulsive loading at the structure's degrees of

freedom, the column vector of applied forces is

{f(t)} = 6(t){1.} (161)

where {l.} is a column vector of ones. The Laplace transform of the

column vector of forces is

{F(s)} {1.} (162)

and the transform of the response for the impulsive loading is

N T
{N(s) = {n}T {i.}D(s)

6(l} (Ym_) {0n }  (163)

The inverse transform of this expression always exists, which follows

from a theorem on the existence of the inverse transform (Reference 28).

Paraphrasing the theorem in terms of the notation used above; it states

that the inverse transform of {X(s)} exists and is real, continuous,

and causal when

1. {R(s)} is analytic for Re[s]>O,
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2. iX(s)y is real for s real and positive, and

3. iX(s) is order s-Y', where ->, for s large in the right

half s plane.

X(s)} is analytic for Re[s]>O when the branch cut of s1/m is chosen

to lie along the negative, real axis in the s plane and the poles of

,X(s)}, which occur at

s X m (164)
n

and do not appear in the right half s plane.*

JX(s)} is real for s real and positive. The only quantities appearing

in Equation 163 that can be complex are ¢n}), Xn and m n, because D(s) and
1/ms{n ,  anmarcope

s are real for s real and positive. When X and m are complex,n n n

they occur in conjugate pairs. Note if Xn and {$n} are a homogeneous

solution to the equations of motion

J
I~ [A. II I{ = {0-} (130)

j= lJ n n

where X n and f n } are complex, that their conjugates are homogeneous

solutions to the equations of motion.

J ---
[ I [A ]X]]{n} : {0.} (165)

j=1 j n n

Equation 165 follows directly from the complex conjugate of Equation 130.

Since homogeneous solutions occur in conjugate pairs, the modal constant

mn occurs in conjugate pairs.

MJ Tj [Aj(60
mn  : {n}T[ Xn "] n }  10

j=1 n

*A pole in the right half s plane indicates that an RT or RTG model in
the equations of motion characterizes the viscoelastic material as
generating energy instead of dissipating energy.
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St[(166)

n n j-1 n i

It follows directly that when the terms in Equation 163 are complex, they

occur in complex conjugate pairs and {i(s)} is real for s real and

positive.

{X(s)} also satisfies the third and last condition placed on the

transform. To show that {X(s)} is order s-2 for s large in the right

half s plane, one uses the transformed equations of motion as they

appear in Equation 97.

s2 [N]{X (s) I + [K(s)]{X(s)} = {F(s)} (97)

The transformed equations of motion for simultaneous, unit impulsive

loading is
2

[s [i] + [K(s)]]{X(s)} {1.1 (167)

The only terms in [K(s)], other than the constant terms, are those terms

proportional to i*(s) and )*(s) from the RT and/or RTG models of the

viscoelastic materials. The general forms of 1*(s) and X*(s) appear in

Equation 62 for the RTG model and Equation 63 for the RT model. As a

direct result of the general forms of p*(s) and A*(s), Equation 167

reduces to
2

s [M]X(s)} {1.} (168)

for s large. Since the elements in the mass matrix are constant, {X(s)}

must be order s Therefore, {i(s)} is order s2 for s large in the

right half s plane.

Having now established that response of the structure to impulsive

loading, {x(t)J,

{x(t)} = LI{X(s)} (169)
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exists and is real, continuous, and causal, the next issue to be

addressed is the calculation of the inverse transform, the topic of

the next sectior.
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SECTION X

CALCULATING THE RESPONSE TO IMPULSIVE LOADING

The final step in determining the impulse response of the structure

is to calculate the inverse transform of the Laplace transform of the

response to impulsive loading.

{X(t)} = L-{(s)1 } : L -  N {nT{l"}D(s)
n1 i/m {n (170)m (S -Xn)

n

The inverse transform integral

Lf{(s)} _ 1 i eSt{x(s)} ds (171)
2wi y-i

is evaluated using the residue theorem from the calculus of a complex

variable.

The closed contour of integration, used in conjunction with the

residue theorem, is given in Figure 18. The contour is divided into

six segments and the direction of integration along each segment is

indicated by the arrows. Segments 3, 4, and 5 of the contour are

required, because the branch cut and branch point of the function s

are taken to be along the negative real axis and at the origin of the s

plane, respectively.

The residue theorem states that the integral along the closed contour,

divided by 27ii, is equal to the sum of the residues of the poles of the

poles of the integrand. In this case, the statement of the residue

theorem translates into

1 6
f {X(s))es ds = I {X(s)lp ds + Jb. (172)1 1 k=2 3
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Positive Imaginary Axis

s plane

2

I

_ __0 Positive

5 Real Axis

Figure 18. The Contour of Integration Used to Evaluate the Inverse
Transform
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-. iwhere the circled index indicates the contour over which the integration

is to be performed, and bj are the residues of the poles of {X(s)}

enclosed by the contour.

The integrals on the segments of the closed contour are evaluated

for the case where the length of segment 1 is extended indefinitely in

the positive and negative imaginary directions.

Y+i .,
f {X(s)}es t ds : f {X(s)}e s t ds (173)
1 .Y-i=

and, as a result, Equation 171 becomes

1 y+ia- 6 st

- -  {X(s)}eIds f- - - I {X(s)}e ds + Ib. (174)
k=2 k j

showing that one need evaluate the right side of Equation 174 to obtain

the inverse transform.

To maintain the continuity of the closed contour, the radii of

segments 2 and 6 are increased indefinitely, and segments 3 and 5 are

extended indefinitely in the negative real direction. When the radii

of contours 2 and 6 are increased indefinitely, it can be demonstrated

that the resulting value of the integrals along these two segments

is zero. This follows directly from the fact that, for large s, {X(s)}
-2 th -2is order s' . Hence, the 9t component of {X(s)} is order s 2

X Is I >> 1 (175)
, s 2

S

Therefore, the asymptotic expression the integral on segment 2 as its

radius increases is

Re i 7 es t

f X (s)e s ds c2  - ds (176)
21 S

2 Re 0
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Expressing s in polar notation, the relation is

eRe t Rie
f X (s)eStds f cI Rie edo (177)

2 0

Isl >> 1

The magnitude of an integral is less than or equal to the maximum value

of the magnitude of the integrands, M, times the length of the path of

integration, L.

f C Re iide < M • L (178)00 R~ei.0

The maximum value of the magnitude of the integral is

M c JeYt (179)

R

and the length of the path of integration in radians is

L = 7r - (180)

The resulting bound for the magnitude of the integral is

Ic I leYt
M. L - (181)

R

which is clearly zero for finite time in the limit as R becomes large or

equivalently, in the limit as s becomes large. Since the magnitude of the

integral is zero, both the real and imaginary parts of the integral are

zero.

lir f X (s)eStd = 0. + iO. (182)
R -c 2
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The expression for the magnitude of the integral along segment 6 is

-00 Re' t

f c id < M • L (183)
- R R2 ei 2 e

and the proof that

lim f X (s)eStds 0. + i0. (184)
6

follows the steps given in Equations 179 through 181.

The integral along segment 4 of the contour is evaluated for the case

where the radius of the contour shrinks to zero. The asymptotic

expression for the integrand, the kth component of Equation 163, for

small s is

N {on)Tl
Z£(S) I - - nt

n=1 mn (-X n )

IsI << I

Ill << I n1 (185)

where $nk is the 9th component of {4bn}, and

D(s) ' 1..

IS << 1 (186)

and

1 1

s/ I- n (-n)

IsI << Ixnl (187)

81



.........

AFML-TR-79-4 103

The asymlptotic expression for the integral on segment 4 is

N n){1s
f X (s)estds f I -k e * etds

4 <1

Is I IX (188)

In polar notation, where

S peie (189)

the expression the integral on segment 4 is

N T {1.1 io
It' = n pe t. 1

f (s)e stds - e e ipe de (190)

Again, the magnitude of the integral on segment 4 is less than or equal

to the maximum magnitude of the integrand, M, times the length of the

pdth Of integration, L.

-I Tnp io i
N I1. ep tie do < M L (191)

W n=1 M n(-X n)

The maximum magnitude of the integrand is

N (o I T1* Qjt
M nep ItIP (192)

and the length of the path of integration is

L 2v(193)
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The resulting expression for the upper bound on the magnitude of the

integral on segment 4 is

Xt(s)e s ds N n Pt 2ip

4 n=1 M (-X n)

IsI << 1

isl << IjXnl (194)

and clearly as p goes to zero, or equivalently as s goes to zero, the

upper bound on the magnitude of the integral goes to zero. Therefore,

lim f X (s)eStds = 0. + iO. (195).
P -*0 4

It has been demonstrated that the integrals on segments 2, 4, and 6

are zero, which reduces the expression for the inverse transform given

in Equation 174 to

f lX(s)}eStds _/{X(s)}e s t ds + jb. (196)
2ni y-i- 2iri k=3, S

The inverse transform is seen to be the integrals along the branch cuts,

segments 3 and 5, plus the sum of the residues of the poles, b.

The expression for the integral along segment 3 is

St Pre I TteiT
X (s)etds f - xk (rei)er e dr (197)3 R

where

s = re (198)
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This expression simplifies to

St in ) rtd

f X IsWe ds X (re )e d (199)

3 P

In the limit as the radius of contour 2, R, goes to infinity and as the

radius of contour 4, P, goes to zero, the integral along segment 3

becomes

lim St IT rt
p-*0 f XZ (s)etds = f X (re )e dr (200)
R-w 3 0

Similarly, the expression for the integral along segment 5 in the limit

as the radius of contour 6 goes to infinity and the radius of contour 4

goes to zero is

im St IT rt
p-X0 f (s)e ds - f X (re- )e- dr (201)

The sum of the integrals along segment 3 and segment 5 is

rf (s)eStds t ((rei) X k(re-i T ))e-rtd r  (202)
k=3,S k 0

Noting that X(re 1) and XQ(re- 1T ) are complex conjugates of each other,

the expression simplifies to

S.f Xt (s)e Stds : 2i ImfX P, (re-ir)e-rt dr (203)

k=3,S k 0

The only terms in the inverse transform, (Equation 195), remaining to
stbe evaluated are the residues of the poles of X(s)es  By definition,

- st
the residues of the poles of X (s)e are

urne
lim t

b : s m (s - ).)X,(s)est (204)
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or

im m N (0)nITl.}D(s) st
b. = m (s ) 1 e (205)

] s-X ]n=1 (S I/ n)

which reduces to

mTlir (s-( ) { l{.}D(s) st

j s / j(206)
j (s M X) mj

Before taking the limit to evaluate the residue, it should be pointed

out that

-M(S-A.) m r-1 1- r/m
Y : [ s (207)

I-7 7 r=1(s -Aj ) rl

which simplifies the expression for the residue to

jim r jrjj m I A {1.}D(s) S
b. = - • C e (208)j s+ -1 J  m

Evaluating the limit produces

bj mi m - 1 .€ } T I3 3 j ,e (209)

M.
3

Hdving evaluated the residues of the poles of the integrand in

the inversion integral, the evaluation of the inverse transform
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is complete. The general expression for the displacement response of

the structure for simultaneous, unit, impulsive loading at all its

degrees of freedom is

Xk(t) = 1 Im [ X(re-i )ertdr]
0

mXm-I (j}Tfj }DXm) X mt

+ e (210)
j m.

This expression is based on Equation 195, using Equations 181, 203, and

209 for the appropriate substitutions.

Note that the response of the structure has two parts, one part being

a sum of decaying sinusoids and the other part an integral that decreases

with increasing time. The integral does not decrease exponentially,

because it is asymptotic to t-  for large t, where ot is greater than one.

Therefore, the integral dominates the response for a time long after the

loading. This component of the response describes the non-oscillatory

return of the structure to its unloaded equilibrium position.

In summary, the response of the structure to impulsive loading can

be calculated using contour integration to evaluate the inverse transform.

Having obtained the response to impulsive loading as a function of time

makes possible determination of the response of the structure to general

loading conditions using convolution. In essence, the calculation of the

response of the structure is no longer tied to the use of Laplace or

Fourier transforms. In other words, the response of the structure to

loading time histories for which transforms do not exist can be

calculated using the response to impulsive loading and the convolution

integral.
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SECTION XI

SUMMARY AND CONCLUSIONS

The generalized der.vative of fractional order is a mathematical

operator well-suited for describing the frequency-dependent mechanical

properties of viscoelastic materials. As shown in Section V and

Appendix C, the generalized derivative constitutive relations for the

materials are capable of describing the frequency-dependent stiffness

and damping of the materials over several decades of frequency, as

observed under conditions of sinusoidal motion.

Moreover, as demonstrated in Section V, the constitutive relation

for 3M-467 predicts accurately the non-periodic (transient) response of

the material as observed in the laboratory. In addition, the generalized

derivative model for 3M-467 performed remarkably better than the Voigt

model.

The generalized derivative RT and RTG voscoelastic models enabled

the formulation of the viscostiffness matrix of the viscoelastic finite

element. This led to the successful formation of the equations of motion,

for a structure containing both elastic and viscoelastic components,

which can be decoupled and solutions obtained using modal analysis.

As demonstrated in Section VIII, the parameters of the solutions can be

determined using the iterative numerical schemes presented.

Finally, it was demonstrated that the response of the structure to

impulsive loading always exists and is continuous, real, and causal.

The general form of the response to impulsive loading was evaluated

using contour integration.

In conclusion, the approach to viscoelasticity resulting from this

investigation is particularly powerful, in that the general motion of a

structure having both elastic and viscoelastic components can be determined

given that two conditions are met. First, the RT and/or RTG models for

the viscoelastic materials in the structure must exist and comply with the

second law of thermodynamics as indicated in Appendix A. Second, every

component of the structure must have a suitable finite element approximation.
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APPENDIX A

THE RT AND RTG MODELS AND THE SECOND LAW
OF THERMODYNAMICS

The focus of the thermodynamic considerations centers on the ability

of the RT and RTG models of viscoelastic materials to satisfy the

second law of thermodynamics. In particular, the objective is to derive

constraints on the parameters of the RT and RTG models to ensure that

the state of stress and strain in the material predicted by the models

is consistent with the second law. The considerations are limited to

the case where the material is at a constant, uniform temperature and

the deformations and resulting stresses in the material are sinusoidal.

The assumption of constant, uniform temperature is motivated by the

observation that the moduli of viscoelastic materials are usually

strongly dependent on temperature. Allowing the temperature of the

material to vary, due to the energy dissipated during the deformation

process, implies that the parameters of the RT and/or RTG model should

be modified to account for the resulting changes in material properties.

However, the RT and RTG models are employed where the parameters of the

models are not changed during the deformation process, which is in

essence a statement that the temperature of material does not change

during deformation.

To implement the assumption of constant, uniform temperature, energy

sinks are assumed to be present at every point in the material. The

energy sinks instantaneously absorb all the dissipatz energy, preventing

the temperature from changing.

The energy sinks are represented in the first law of thermodynamics

pi = p + V.9 + pq (A.l)

by q, the local rate of change of energy density through non-mechanical

effects. In this local form of the first law, V-h is the divergence of

the energy flux vector, p is the local rate at which internal work is
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done by mechanical means, c is the internal energy per unit mass of the

material, and p is the mass density.

The following development, based solely on the first and second laws,

is an adaptation of the work of Coleman and Truesdell on the thermodynamics

of deformations for the specific case at hand (Reference 29). In

notation identical to Truesdell's, the second law for a material at

constant, uniform temperature is

pe;- v.h - pq > 0 (A.2)

where n is the entropy per unit mass and 6 is temperature. This local

form of the second law is based on the Clausius-Planck inequality.

Two other entities relevant to the following discussion are the free

energy of the material, i,

= C - ne (A.3)

and the internal dissipation rate, 6,

6 p - P()b (A.4)

where the dots indicate first time derivatives. Substituting the

expression for the dissipation rate produces

6 pe; + (p - p;) (A.5)

Using the first law to substitute for p - p in Equation A.5 yields

6 pe;- v.E- pq (A.6)

From the second law and the above expression for the dissipation rate,

it is clear that the second law is always satisfied when

6 0 (A.7)

In other words, when the local internal dissipation rate of a material is

non-negative, the behavior of the material is consistent with the second

law.*

*This result is contained in Coleman's general theorem on the non-

equilibrium thermodynamics of deformation (References 30, 32).
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The task remaining is to express the dissipation rate in terms of

the stresses and strains in the material. To that end, recall that the

energy sinks absorb all the dissipated energy.

6 -pq (A.8)

In light of the expression for the dissipation rate given in Equation A.6,

+ pe; = 0 (A.9)

Since the absorption of the energy by the sinks prevents the opportunity

for energy conduction,

if = -(A.10)

and, as a result

v.h = 0 (A.ll)

and consequently

0. (A.12)

Since the rate of change of the entropy, n, is zero, Equation A.5

reduces to

6 (p - p) .(A.13)

The internal dissipation rate can now be expressed in terms of stress

and strain, provided the internal energy per unit volume, pE, can be

expressed in terms of the rate of change of strain energy, u. The

internal energy per unit mass, E, is taken to be a function of temperature

plus the strain energy per unit mass, u/p.

= f(e) + u/p (A.14)

For small strain the expression for one over density is

I/p(t) - (1 + e(t))/p 0  (A.15)

where p0 is the unstrained density and e(t) is the dilatation strain,

defined in Equation 38. The resulting expression for the internal energy

is

C f(e) + u.(1 + e(t))/p 0  (A.16)
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which simplifies to

C = f(o) + (A.17)

for small strain. Since the temperature is constant, the expression for

the strain energy rate is

U/p (A.18)

and the resulting expression for the dissipation rate is

6 (p u (A.19)

again, for the small strain.

The dissipation rate in terms of the stresses and strains is

T T.
6 = ({a(t)} }{(t) } - (o(t)1 }{ t)}) (A.20)

or

6 = {{o(t) {W (t) t)} (A.21)

where {(t)} is the column vector of the strain rates, {a(t)} is the

column vector of the stresses and {c'(t)} is the column vector of those

components of the stress acting to store and retrieve strain energy in

the material. As indicated in Section IV, the stresses storing and

retrieving strain energy for steady-state, sinusoidal motion were those

stresses in-phase with the strains. Consequently, the total stresses,

{u(t)}, minus the in-phase stresses, {c'(t)}, leaves the out-of-phase

stresses, {a(t)}.

6 = {o,(t) }{(t)} (A.22)

The stress out-of-phase with the strains

Emn (t) = EmnoSin0ot (64)
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are those stresses proportional to cosw 0t in Equation 65

0- mn (t) i 6mnF3 (w0 )e 0 coswot + F4 (W)c mnoCOSW0 t (A.23*)

0

The dissipation rate in terms of the stresses and strains given above is

3 3
o= woF 3 (o)e~ c°S2 wt + nl m woF 4 (wo)cnCos 2 Wot (A.24)

If the parameters of the RT and/or RTG models are chosen such that

woF 3 (Wo) 0 0 (A.25)

woF 4 (w0 ) 2 0 (A.26)

for all positive w0, the state of stress and strain in the material

predicted by the models is consistent with the second law.

Although the above development is for sinusoidal motion of the

material, its application extends to periodic strain histories. Consider

the case where the material undergoes prescribed, piece-wise continuous

and bounded strain history of finite duration and the material is allowed

sufficient time for the stresses to relax to their unloaded equilibrium

value of zero. Assume that at some later time the same strain history

is imposed on the material and the material again allowed to fully relax,

and this process of loading and relaxation is repeated continuously at a

spc:ified interval. The stress and strain histories of the material

are periodic and can be broken into their respective frequency components

using Fourier analysis. The internal dissipation of each frequency

component of the strain is given by Equation A.24 and satisfies the

second law, given that Equations A.25 and A.26 hold.

*F 3((0o ) and F4(w 0 ) are functions of the parameters of the RT and RTG

models and are defined by Equations 67 and 70.
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Consequently, the periodic stress and strain histories of the material

comply with the second law. As a result, satisfying Equations A.25 and

A.26 is sufficient to ensure that the response of the material to a

piece-wise continuous and bounded strain history of finite duration

satisfies the second law. This follows from the observation that each

loading and relaxation cycle of the material can be viewed as an

independent response sequence.
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APPENDIX B

A GENERALIZED DERIVATIVE RELATION FOR A
NEWTONIAN FLUID

By way of motivation toward describing the motion of physical systems

with generalized derivative equations, it is interesting to note that a

Newtonian fluid, defined by the stress-strain rate constitutive relation

3Vo T (B.1)

where i is the bulk viscosity, can undergo dynamic motion which lends

itself to description using a generalized derivative. When the Newtonian

constitutive relation is introduced into the one-dimensional momentum

equation for a homogeneous, incompressible fluid at uniform, constant

temperature
av - 0

t Z(B.2)

the resulting differential equation is

av 2V

p -: P 3 (B.3)

This equation is immediately recognized as being in the form of the

one-dimensional diffusion equation. Donaldson (Reference 31) has

demonstrated that solutions of the one-dimensional diffusion equation

may be represented using fractional calculus. Of particular interest

at this point is the solution to the one-dimensional diffusion equation

that occurs when an infinite half-space of such a Newtonian fluid is

bounded by a "wetted" planar surface undergoing some known motion.*

If the known motion of the bounding surface has a Laplace transform,

Laplace transforms may be used to solve the diffusion equation.

*This problem is a generalization of Stokes' second problem in which

Stokes assumed the motion of the "wetted" plate to be sinusoidal
(Reference 33).
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Vo0(t)

"Wetted" Surface\_

Newtonian Viscous

Fluid

Negative z Axis

Figure B-1. Schematic of the Half Space of Newtonian Fluid Bounded
by a "Wetted" Surface
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A derivation of the solution is given here for completeness. Taking

the Laplace transform of Equation B.3 results in

p(sV(s,z) - v(O,z)) = (s,z) (B.4)
3z2

where V(s,z) is the transform of the velocity

V(s,z) = f v(t ,z)e- Stdt (B.5)
0

Assuming the fluid is initially excited from a state of rest, the initial

velocity, v(O,z), is zero and the resulting differential equation is

PsV(sz) _ 2 (s,z) (B.6)
Dz

2

The solution of this differential equation is readily seen to be

V(s = A(s)e+ B(s)e- (B.7)

Choosing the coordinate system such that the normal of the bounding

surface is parallel to the negative Z axis, one can proceed to determine

the functions A(s) and B(s) in terms of the boundary conditions. The

first boundary condition to be satisfied is that the magnitude of the

velocity of the fluid be bounded for large, negative Z. Consequently,

B(s) must be zero. The other boundary condition is that, at the interface

of the fluid and the bounding surface, the velocity of the fluid must be

equal to the velocity of the bounding surface, v (t). To enforce this

boundary condition, one first takes the transform of v o(t)

Vo (S) = vI (t)e 'tdt (B.8)
0

and the boundary condition is applied in the transform domain as shown

V(s z) A A(s e+ (B.9)
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V(s,O A(s) = V (s) (B.10)
0

The resulting expression for the transform of the velocity of the fluid

at a distance z below the plate is

V(s,z) = 0 (s)e (B.ll)

At this point one wishes to determine the stresses in the fluid

according to the Newtonian constitutive relation (Equation B.1). The

transform of Equation B.1 is

o*(s,z) = 3V(s,z) (B.12)
@z

Substituting Equation B.ll into Equation B.12 for V(s,z) produces

o*(s,z) = ' /s V(s,z) (B.14)

The transform of the stress may be inverted by observing that the

transform is the product of the transforms of two known functions of time.
1 -

o*(sz) = sV(s,z) : /ppL[(r( )t ) - I

* L[' (t,z)] (B.15)

Thus, the stress is seen to be the convolution of the two functions of

time,

a(t,z) UP f t z dt. (B.16)
r () 0 (tr)

For the zero initial condition on velocity, Equation B.16 is equivalent to

o(t,z) = L2P d ftV(t'z) dt (B.17)
r( ) dt 0 (t-T)
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Notice that Equation B.17 states that the stress at any location in

the fluid is equal to a constant, AVpi , times the generalized derivative

of fractional order t, of the velocity of the fluid at that location.

ao(t z) V _PD [V (t , z (B.18)

This stress-velocity relation evaluated over an area A of the "wetted"

surface, z = 0, produces a force-velocity relation.

f(t,0) = A /-1p D [v 0 (t)] (B.19)

Thus, we see that in this one case, the macroscopic behavior of a

Newtonian, viscous fluid is characterized by a generalized derivative of

fractional order , even though the microscopic behavior is

o(t,z) = l(t,z) (B.20)

This observation suggests that generalized derivatives may have

applications in other situations where a global, or discrete, description

is desired of a phenomenon which is locally viscous.
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APPENDIX C

RT AND RTG MODELS FOR VISCOELASTIC MATERIALS

Generalized derivative constitutive relations for three viscoelastic
materials are presented. The material properties on which the RT and RTG

models are based (Reference 34) were determined using the "temperature-

frequency superposition" principle (Reference 33).

The RTG model for the sheir modulus of the viscoelastic material

3M-467 at 75°F is

(1 + b1D )a(t) (o + (C.)

where

b = 8 x 10 4 sec'5 1  (C.2)

11 = 1.0 lb/in 2  (C.3)

= 7.3 lb-sec' 6/in 2  (C.4)

= .51 (C.5)

and

= .56 (C.6)

The mechanical properties predicted by the model are compared to the

material's properties in Figure C-l. Note the excellent agreement

between the model and the material properties over 8 decades of frequency.

The RT model for the viscoelastic Young's modulus of Sylgard 188 at

120°F is
(E +) D t) (C.7)

o(t) = (Eo  ED t(C7

10
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where

E°  = 60 lb/in2  (C.8)

24

E = 43 lb-sec • /in 2  (C.9)

and

= .24 (C.10)

The mechanical properties predicted by the model are compared to the

material's properties in Figure C-2.

The RT model for the viscoelastic Young's modulus of BTR at 45°F is

a(t) (EID + E2D ) (t) (C.l1)

where

095

E1  = 8S0 lb-sec" /in 2  (C.12)

28

E2  = 18 lb-sec • /in2 (C.13)

a, = .095 (C.14)

and
a2  = .28 (C.15)

A comparison of the model and material properties is given in Figure C-3.

Although the agreement between the material properties and their

respective models is very good, not all viscoelastic materials lend

themselves to characterization by generalized derivatives models. The

materials most suited to modeling with generalized derivative
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constitutive relations are those that have properties such that the

following relation holds in the transition region:

n= tan ITO (C.16)

where n is the loss factor and a is the slope of the plot of the loglo

of the real part of the modulus plotted as a function of lOglo of the

frequency of motion.

In summary, generalized derivative constitutive relations do in fact

model the frequency dependent mechanical properties of at least three

viscoelastic materials. However, each model is of a different basic

form, as can be seen by comparing Equations C.l, C.7, and C.ll. Hence,

the RT or RTG models are capable of describing viscoelastic materials

having distinctly different mechanical properties.
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Figure C-3. The Mechanical Properties of BTR Compared to the RT Model
of BTR
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